
Recursive Constraint Manifold Subsearch
for Multirobot Path Planning with Cooperative Tasks

Peter Karkus
NUS Graduate School for Integrative Sciences

and Engineering, School of Computing
National University of Singapore

Glenn Wagner, Howie Choset
Robotics Institute

Carnagie Mellon University

Abstract

The Cooperative Path Planning (CPP) problem seeks to de-
termine a path for a group of robots which form tempo-
rary teams to perform tasks. The multi-scale effects of si-
multaneously coordinating many robots distributed across the
workspace while also tightly coordinating the members of
teams increases the difficulty of planning. Previous research
produced the Constraint Manifold Subsearch (CMS) algo-
rithm that can find minimal length paths to the CPP problem.
However, CMS as currently formulated cannot handle more
general cost functions, such as minimizing energy expendi-
ture, and cannot handle task schedules that require multiple
input teams to merge to form a set of multiple output teams.
Furthermore, as CMS must couple planning for all interact-
ing teams, it does not scale well to very large environments. In
this paper, we rederive the CMS algorithm using a task graph
to reason about inter-team dependencies, allowing the use of
more general cost functions and task schedules. We then in-
troduce the recursive CMS (rCMS) algorithm that exploits the
reformulation to split the CPP into independent subproblems,
significantly reducing computational complexity. Simulation
studies show that rCMS can solve substantially larger prob-
lems than CMS.

Introduction

Many interesting problems, such as automated assembly or
observation of multiple targets, involve tasks where robots
must temporarily form cooperative teams. Handling the dy-
namic formation and dissolution of these robot teams re-
quires solving two problems: assigning robots to tasks, and
coordinating the motions of large numbers of robots. In this
work, the assignment of robots to tasks and the order in
which tasks must be executed are assumed to be provided
a priori, and the focus will be on finding optimal or near-
optimal, collision-free paths for large numbers of robots that
dynamically form teams, which we term the Cooperative
Path Planning problem.

This work is based on the Constraint Manifold Subsearch
(CMS) algorithm (Wagner et al. 2015) for solving the CPP
problem, which in turn is based on the M* algorithm (Wag-
ner and Choset 2011) for solving the related multirobot path
planning algorithm. M* finds optimal or near optimal paths

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

for large numbers of individual robots from an initial con-
figuration to a goal configuration by decoupling planning
for separate robots when possible. Initially planning is con-
ducted for each robot separately in its individual config-
uration space, then M* (locally) merges the configuration
spaces of multiple robots only after finding a potential col-
lision. However, M* cannot handle the CPP problem, which
requires robots to form tightly coupled teams. CMS extends
M* to solve the CPP problem by temporarily merging the
robots in a team into a single meta-agent whose configu-
ration space is the constraint manifold of the task, i.e. the
subspace of the team configuration space that satisfies the
constraints of the task.

CMS is complete and guaranteed to find minimal length
paths, or can accept ε-suboptimality in return for greatly re-
duced planning time. However, CMS cannot minimize more
general cost functions, such as energy expenditure, and can-
not handle complex transitions where multiple teams each
containing multiple robots merge to form a new set of two
or more teams. Finally, CMS scales poorly in large envi-
ronments, as CMS must couple planning for all robots for
which CMS has found a potential collision, even if there are
multiple, spatially separated collisions.

This paper reformulates the CMS algorithm by using a
task graph to reason about dependencies between teams of
robots. The reformulation allows for more general cost func-
tions and for more complex transitions between teams. Fur-
thermore, the reformulation makes identification of indepen-
dent subproblems easier. This leads to the introduction of the
recursive CMS (rCMS) algorithm, which reduces compu-
tational complexity by identifying and solving independent
subproblems. Simulation studies demonstrate that rCMS can
solve substantially larger problems than CMS.

Prior Work

Solving the CPP problem requires solving two qualitatively
different problems: coordinating the simultaneous motion
of many teams of robots (Wagner and Choset 2011) (Fel-
ner et al. 2012) (Sharon et al. 2012) (Standley 2010) and
finding paths for the robots within a team that satisfy the
constraints of the task being executed. While there has
been a large amount of work in formation control (Belta
and Kumar 2001) (Leonard and Fiorelli 2001) (Lewis and
Tan 1997) (Spears and Gordon 1999) (Yang, Freeman, and

Proceedings of the Ninth International
Symposium on Combinatorial Search (SoCS 2016)

54

Lynch 2008) and cooperative manipulation (Alonso-Mora
et al. 2015) (Desai and Kumar 1999) (Koga and Latombe
1994) (Rus, Donald, and Jennings 1995), little work has
been done in the context of path planning with the dynamic
formation and dissolution of teams. We review some of the
notable exceptions which have inspired our work here.

(Ayanian and Kumar 2010), (Desaraju and How 2012),
and (Bhattacharya, Likhachev, and Kumar 2010) developed
CPP planners that could plan for systems where multiple
teams form and persist for significant durations. Ayanian
and Kumar (Ayanian and Kumar 2010) solved problems
where robots must remain in close proximity to the other
robots in its team by searching the prepares graph of con-
trollers in a sequential composition framework (Burridge,
Rizzi, and Koditschek 1999), and later extended the work to
consider dynamic formation and dissolution of teams (Aya-
nian 2011), but this algorithm did not scale well to larger
numbers of robots or consider the dependencies between
teams introduced by successive teams sharing robots. De-
saraju and How (Desaraju and How 2012) and Bhattacharya,
Likhachev and Kumar (Bhattacharya, Likhachev, and Ku-
mar 2010) both developed CPP algorithms that operate in-
crementally by adjusting the path of one robot at a time to
better match the constraints imposed by its tasks. Desaraju
and How (Desaraju and How 2012) developed DM-RRT, a
decentralized algorithm where a single robot was allowed to
replan its path to better match the task constraints. DM-RRT
scales well with increasing numbers of robots, but guar-
antees neither completeness nor optimality. Bhattacharya,
Likhachev and Kumar (Bhattacharya, Likhachev, and Ku-
mar 2010) repeatedly replanned paths for individual robots
while gradually increasing the cost of violating task con-
straints. The resulting approach can be shown to eventually
converge to the optimal path, but does not scale well with
increasing numbers of robots.

Problem Definition

The objective of the CPP problem is to find a minimal cost,
collision-free path for teams of robots that complete a set of
m cooperative tasks. The configuration space of each robot
ri, i ∈ {1, 2, . . . n} is represented by a weighted configu-
ration graph Gi

conf = {V i
conf, E

i
conf}, where vertices repre-

sent the configuration of ri and edges represent valid ac-
tions. The weight of each edge is the non-negative cost as-
sociated with each action. The joint configuration space of
the system as a whole is represented by the joint configu-
ration graph Gconf =

∏
i G

i
conf which is the direct product

of the individual configuration graphs. The cost of an edge
in the joint configuration graph is the sum of the costs of the
underlying edges in the individual configuration graphs. The
configuration graph of a team of robots is the direct product
of the configuration graphs of the constituent robots. An op-
timal solution to the CPP problem is a path that minimizes
the sum of the costs of the edges in the path while complet-
ing all tasks and avoiding collisions between robots.

Each task is represented by a tuple (τ j , vjs, v
j
f ,C

j), j ∈
{1, 2, . . . ,m} where τ j is the team of robots assigned to per-
form the task, vjs is the vertex in the configuration graph of

τ j at which task execution can start, vjf is the goal vertex in
the configuration graph of τ j at which the task can be com-
pleted, and Cj is a set of task constraints that the robots in
τ j must satisfy during task execution. Examples of task con-
straints include robots carrying a rigid body needing to stay
a constant distant apart, or robots observing a target needing
to stay on opposite sides to keep the full surface of the target
in view. For simplicity, we assume that every robot is always
part of a (potentially single robot) team.

In some cases multiple teams must cooperate to complete
their tasks. For instance, multiple small teams may be tasked
to pick up a single large object, forming a new, large team to
carry the object to its destination. Clearly none of the small
teams lift the object until all are at their goal configurations.
To model such situations, a team is required to take an ex-
plicit transition action while at its goal configuration to com-
plete its task. Each transition action has a set of input teams,
all of which must take the transition action simultaneously
to complete their tasks, and a set of output teams that form
from the robots constituting the input teams when the tran-
sition action is performed.

The order in which teams perform their tasks and the input
and output teams for each transition action are encoded in a
directed, acyclic task graph, a standard tool for reasoning
about task ordering (Graham et al. 1979) (Hu 1961). Each
vertex corresponds to either a team or a transition action.
Edges connect each input team to its corresponding tran-
sition action, and connect a transition action to its output
teams.

This paper makes two simplifying assumptions. Teams
are assumed to be able to wait indefinitely at their goal ver-
tices. Furthermore, teams incurs zero cost for waiting at their
goal vertices if they cannot take the transition action due to
the other input teams not being at their goal vertices or if the
team does not have a successor in the task graph (i.e. is a
terminal team).

Constraint Manifold Subsearch

CMS (Wagner et al. 2015) is based on a multirobot path
planning algorithm called M* (Wagner and Choset 2011).
M* seeks to efficiently find optimal or near optimal paths for
multirobot systems by initially planning for each robot sep-
arately, then only considering alternate paths for robots that
are directly involved in conflicts with other robots. CMS ex-
tends M* to the CPP problem by adjusting the search space
so every team is explicitly restricted to the constraint man-
ifold1 of its task, the subspace of the configuration space
of the team that satisfies the task constraints. A team is re-
stricted to its constraint manifold by temporarily merging its
constituent robots into a single meta-agent whose configura-
tion space is the constraint manifold of the task.

CMS represents the constraint manifold Mi of team τ i

with the weighted, directed, manifold graph Gi = {V i, Ei}.
Vertices vi ∈ V i represent valid team configurations, while
edges in Ei represent actions of the team. The cost of an

1Constraint manifold is a term of convenience: CMS can solve
problems where the task constraints are satisfied on a subspace that
is not a manifold.

55

Figure 1: Example of a task graph. Robot r1 is the sole robot
assigned to team τ1; r2 is assigned to teams τ2, τ4, and τ5;
r3 is assigned to τ3, τ4, and τ6; and r4 is the only robot
assigned to τ7. Note that v5s = v5f , so τ5 is represented by a
single vertex in Vgl (blue), and has no corresponding vertex
in Vtm (red). The transition vertices are the gray squares.

edge is the cost associated with the team action. vis and vif
are henceforth treated as vertices in Gi. Different manifold
graphs may discretize the configuration space of the same
robot differently; an independent robot may move on a rect-
angular grid, but move on circular arcs when part of a for-
mation to permit rotation.

CMS finds a solution to the CPP problem by exploring
a graph that is the product of the manifold graphs of the
teams. As in the case of M*, the resulting graph is far too
large to explore directly. CMS first plans for each team sep-
arately. When CMS finds a conflict between teams in the re-
sulting path, it considers alternate paths for only those teams
that could influence the path taken by the conflicting teams.
As formulated in (Wagner et al. 2015), CMS determines if
the path of one team depends upon that of another team by
checking if their constituent robots overlap. This criteria is
sufficient as long as the cost function being minimized pe-
nalizes time spent away from the goal configuration of each
team, and every transition between teams consists of mul-
tiple teams merging to form a single new team or a single
team splitting into multiple smaller teams.

In this section, we reformulate CMS to use the task graph
to reason about the dependencies between teams. The re-
vised algorithm is simpler, supports more general cost func-
tions that are the sum of the costs of the individual teams,
and supports arbitrary transitions between teams. We start
by describing how the task graph is used to reason about de-
pendencies between teams, followed by an algorithmic de-
scription of CMS.

The Task Graph

If team τ i is involved in a conflict with another team then
there are three ways that the path of τ i can be altered to
avoid the collision

1. τ i can take a different path from vis to vif

2. The teams that precede τ i can alter their paths so that τ i
forms earlier or later, altering the position of τ i relative to

other moving teams
3. The other input teams for the transition action that com-

pletes τ i can take shorter, but potentially more expensive,
paths to reach their goal vertices earlier, allowing τ i to
take the transition action before the conflict would occur.

Note that case 3 is only relevant if τ i had reached its goal
vertex at least once prior to the conflict, or it would be un-
able to have taken the transition action prior to the conflict
regardless of the paths of the other input teams. These rules
dictate the teams for which CMS must consider alternate
paths to optimally resolve a conflict involving τ i. We note
that the previous formulation of CMS did not consider case
3, which limited it to cost functions that minimized time to
complete tasks, that naturally cause teams to reach their goal
configurations as rapidly as possible.

CMS computes the teams that can resolve a conflict in-
volving τ i using a modified task graph. First note that case
3 means that the team dependencies change once τ i reaches
its goal vertex for the first time2. Therefore, τ i is labeled
τ itm before it reaches its goal vertex, and τ igl after it has
reached its goal vertex. To simplify later discussion, τ i is
used to denote both τ itm and τ igl in cases where the distinc-
tion is not relevant. CMS then defines the task graph as a
directed tripartite graph Gtask = {Vtm, Vgl, Vtr, Etask}. The
vertices τ itm ∈ Vtm and τ igl ∈ Vgl are teams before and af-
ter reaching their goal vertices, respectively. The transition
vertices vtr ∈ Vtr represent transition actions. In the spe-
cial case where vis = vif , for instance because τ i is a sin-
gle robot that must wait for another team to arrive to form
its next team, the task graph contains τ igl but not τ itm. Let
vtask ∈ Vtm ∪ Vgl ∪ Vtr denote an arbitrary vertex in the task
graph. Figure 1 gives an example of the task graph.

The task graph defines a partial ordering that describes the
sequence in which teams must execute their tasks, wherein
a vertex vitask ∈ Gtask is dominated by vjtask ∈ Gtask, denoted
vitask ≤ vjtask, if there is a path in Gtask from vitask to vjtask or
vitask = vjtask. Similarly, vitask < vjtask if vitask ≤ vjtask ∧ vitask �=
vjtask. Two vertices are incomparable if there is no path be-
tween them in Gtask. Finally, a team or transition vertex is
dominated by a set of task graph vertices if it is dominated
by at least one element of the set.

Case 1 states that CMS must consider alternate paths for
teams τ j that must finish their tasks before τ i can start,
which corresponds to τ j < τ i. If case 3 is relevant, then
τ i = τ igl ∈ Vgl, and its successor is a transition vertex which
dominates all of its input teams. CMS can thus use the suc-
cessor of τ i to determine the relevant teams, as if τ i ∈ Vtm its
only successor is τ igl whose only direct predecessor is τ i. We
therefore conclude that if τ i is involved in a collision, then
CMS must consider alternate paths for all teams τ j such that
τ j < successor

(
τ i
)
∨ τ j = τ i, where successor

(
τ i
)

is
the successor of τ i in the task vertex. The τ j = τ i condition
is necessary for terminal teams that have no successors in
the task graph, such as τ7gl in Figure 1.

2τ i may temporarily move away from vif to avoid other con-
flicts.

56

Algorithm 1 FindPath
1: function FINDPATH(v)
2: open list ← {v}
3: while open list �= ∅ do
4: vk ← open list.pop best()
5: if vk.closed then
6: continue
7: if ISGOAL(vk) then
8: return follow back ptr to find optimal path to vk
9: EXPAND(vk, open list)

10: return No Solution

11: function ISGOAL(v)
Returns true if all teams in v are at their goal configura-
tion and have no successors in the task graph

Applying the above reasoning to conflicts involving mul-
tiple teams gives the following lemma

Lemma 1. A conflict between a set of teams C can be opti-
mally resolved by considering alternate paths for all τ i such
that τ i < successor (C)∨ τ i ∈ C, where successor (C) is
the set of successors of teams in C.

Algorithmic description of CMS

CMS functions by alternating between running A* search on
a low-dimensional search graph and expanding the search
graph to generate alternate paths around potential conflicts
found by the A* search. The search graph is initially con-
structed using the individual policies of the teams, that de-
scribe the optimal path for each team if no robot-robot colli-
sions could occur. Each vertex vk in the search graph main-
tains a conflict set Ck that tracks the teams that potentially
conflict at successors of the vertex, and a coupled set Γk of
teams that might be able to avert the conflicts by changing
their action at vk. The coupled set is then used to grow the
search graph to provide alternate paths around conflicts.

The search graph explored by CMS is a subgraph of the
directed task augmented joint configuration graph G, which
tracks the teams that are actively executing their tasks at a
given point in the plan and the configuration of the active
teams. Each vertex in G is a set of ordered pairs

(
τ i, vi

)
,

where τ i is a team that is currently executing its task and vi

is a vertex in Gi describing the team’s configuration. Let the
active teams T act

k denote the set of teams performing their
task at vk. Edges in G correspond to motion of the teams
and transitions between teams.

CMS begins by computing a separate individual policy
φi : V i
→ V i for each team. The individual policy for τ i
returns the next step along the optimal path from any vertex
in Gi to vif if no other teams were present. The minimal cost
for τ i to reach its goal from any given vertex in Gi can also
be computed from the individual policy.

After the individual policies are computed, CMS enters a
standard A* search loop (Algorithm 1). The vertices vk in
the open list are sorted by their f-value, f = g + h, which is
the sum of a g-value, the current upper bound on the cost of

Algorithm 2 Expand
1: function EXPAND(vk, open list)
2: vk.closed ← True
3: neighbors ← GETNEIGHBORS(v)
4: for v� ∈ neighbors do
5: C = COLLISION(vk, v�)
6: BACKPROPAGATE(vk, C, open list)
7: if C �= ∅ then
8: continue
9: v�.back prop set.add(vk)

10: BACKPROPAGATE(vk, C�, open list)
11: if vk.g + EDGECOST(vk, v�) ≥ v�.g ∨v�.closed then
12: continue
13: v�.g ← vk.g + EDGECOST(vk, v�)
14: // used to reconstruct optimal path
15: v�.back ptr ← vk
16: open list.insert(v�)

17: function COLLISION(vk, v�)
Returns the set of teams that collide when the system
traverses the edge from vk to v�

18: function BACKPROPAGATE(vk, C,open list)
19: // Propagate if C changes the coupled set
20: if COUPLEDSET(C) �⊂ COUPLEDSET(Ck) then
21: Ck ← Ck ∪ C
22: // Mark vk as open to explore new neighbors
23: vk.closed ← False
24: open list.insert(vk)
25: for v� ∈ vk.back prop set do
26: BACKPROPAGATE(v�, Ck,open list)

the optimal path from the initial configuration to vk, and a
h-value, the heuristic cost to go. The heuristic used by CMS
is the sum of the costs of the active teams and all subsequent
teams (those not dominated by an active team) completing
their tasks by following their individual policies. The result-
ing heuristic is admissible and monotonic.

CMS calls the EXPAND function (Algorithm 2) to add
neighbors of the expanded vertex to the open list, and it also
handles detection of conflicts and updating the conflict and
coupled sets when conflicts are detected. When a vertex vk is
expanded, CMS considers only a subset of all the neighbors
of vk in G termed the limited neighbors, which are deter-
mined by the coupled set of vk. The limited neighbors are
generated by the GETNEIGHBORS function (Algorithm 3),
which is described in detail later in this section.

For each limited neighbor v� CMS checks if there are
any teams that would collide while moving along the edge
from vk to v�. If so, then the colliding teams are added to
the conflict set of vk and all predecessors of vk using the
BACKPROPAGATE function. If updating the conflict set of vk
changes the coupled set of vk (the computation of the cou-
pled set from the conflict set is detailed later this section),
then vk has new limited neighbors. To explore these addi-
tional neighbors CMS adds vk back to the open list, even if
vk had previously been marked as closed.

57

Algorithm 3 GetNeighbors
1: function GETNEIGHBORS(vk)
2: // Holds partial combinations of actions for teams
3: neighbors ← {∅}
4: // Generate possible actions one team at a time
5: for

(
τ i, vik

)
∈ vk do

6: // Temporary variable
7: add step ← ∅
8: // Iterate combinations of actions for earlier teams
9: for neib ∈ neighbors do

10: if ∃τ j ∈ neib, τ i ≤ τ j then
11: // τ i already assigned a transition action
12: add step.append(neib)
13: continue
14: add step.append(neib ∪ GETPOLICY(vk, τ i, neib))
15: // Consider all actions for teams in the coupled set
16: if τ i ∈ Γk then
17: for vi� ∈ OUTNEIGHBORS(vik) do

18: add step.append(neib ∪
{
(τ i, vi�)

}
)

19: neighbors ← add step
20: return neighbors

Whenever a
(
τ i, vi

)
pair is generated, test if τ i ∈ Vtm

and vi = vif . If so, replace τ i with τ igl

If the edge connecting vk to v� is collision free CMS
marks vk as a predecessor of v� by adding vk to the back-
propagation set (back prop set) of v�. Then BACKPROPA-
GATE is called to add the conflict set of v� to Ck. CMS then
updates the g-value of v� and adds v� to the open list, if ap-
propriate.

The GETNEIGHBORS function (Algorithm 3) returns the
limited neighbors of a given vertex vk, thus incrementally
defining the search graph. Initially each team τ i will take
the action dictated by their individual policy. Teams at their
goal vertices will take the transition action to finish their
tasks if the other input teams are also at their goal vertices,
or will stay in place if there are one or more input teams
away from their goals. The result is a single limited neigh-
bor. Considering only a single neighbor will generate a path
that is almost certainly blocked by at least one conflict be-
tween teams. When CMS finds a conflict between teams at
a successor of vk, it adds the conflicting teams to the con-
flict set of vk and marks vk for reexpansion (Algorithm 2).
If vk has a non-empty conflict set when expanded CMS must
consider all alternate paths that could prevent the conflict to
ensure optimality. To this end, CMS computes a coupled set
Γk containing all the teams that could alter the path taken by
the teams in the conflict set (Lemma 1)
Γk =

{
τ i ∈ T act

k |τ i < successor (Ck) ∨ τ i ∈ Ck

}
, (1)

where successor (Ck) is the set of the successors of the ele-
ments of Ck in the task graph. CMS then generates the lim-
ited neighbors by considering all possible combinations of
actions for teams in the coupled set, while teams not in the
coupled set continue to obey their individual policies (Algo-
rithm 4).

Algorithm 4 GetPolicy
1: // Generate action taken by τ i when following its indi-

vidual policy at vk, including taking transition actions
2: function GETPOLICY(vk, τ i, neib)
3: ret ← ∅
4: // Take the transition action if possible, else follow in-

dividual policy
5: if CANTRANSITION(τ i, vk, neib) then
6: for τ j ∈ OUTPUTTEAMS(τ i) do
7: ret ← ret ∪{(τ j , vjs)}
8: else
9: ret ←

{
(τ i, φi(vik))

}

return ret

10: function CANTRANSITION(τ i, vk, neib)
Returns True if every input team for the next transition
action of τ i is at its goal vertex in the configuration
given by vk, and no input team already has an action
assigned in neib

11: function OUTPUTTEAMS(τ i)
12: Returns the output teams of the transition vertex for

which τ i is an input team.

As an example of how coupled sets are computed consider
the case of the task graph given in Figure 1. If teams τ1 and
τ2 were to collide before τ1 and τ2 reached their goal con-
figuration, then the conflict set would be {τ1tm, τ2tm}. CMS
may then backtrack in the search tree to consider alternate
paths from a vertex v� with the active teams {τ1tm, τ2tm, τ3tm}.
The coupled set of v� would be the teams dominated by
{τ1gl, τ2gl}, which are {τ1tm, τ2tm}. However, if CMS had
found a potential collision between τ1 and τ2 after τ2 had
reached its goal configuration then the conflict set would be
{τ1tm, τ2gl}. If CMS then backtracked to the same vertex v�,
the coupled set would be the teams dominated by {τ1gl, vatr},
which are {τ1tm, τ2tm, τ3tm}. τ3 would be added to the cou-
pled set because τ2 might be able to avoid the collision with
τ1 by taking the team formation action earlier. τ2 can only
take the transition action when τ3 is also at its goal configu-
ration, so τ3 might need to take a shorter but more expensive
path to allow the transition action to occur earlier.

Note that a collision between two single robot teams could
eventually result in coupled planning for all robots in the
system at some predecessor vertex, especially if a single
robot is part of multiple teams containing different robots.
In such cases finding an optimal solution would be compu-
tationally very expensive. Inflating the heuristic function by
a constant factor ε biases search towards the final state of
the system (Pohl 1973), which provides a soft limit on how
far back in the search CMS will look for an alternate path
around collisions, limiting the effective size of the coupled
set. However, inflated CMS is ε-suboptimal, which means
that it may return a path that costs up to ε times the cost of
the optimal path.

In practice, CMS uses Operator Decomposition (OD)

58

Algorithm 5 GetNeighborsRecursive
// This function is used to solve subproblems, where
transition actions may have different output teams than
in the full problem

1: function GETNEIGHBORSRECURSIVE(vk)
2: if NUMELEMENTS(Γk)= 1 ∧ Γ1

k = T act
k then

3: return GETNEIGHBORS(vk)
4: // Initialize a vertex with an empty coordinate
5: v� = ∅
6: // Compose partial solutions for each subproblem
7: for Ci

k ∈ Ck do

8: query vertex =
{(

τ i, vik
)
|τ i ∈ Γi

k

}

9: v� ← v�∪GETSTEP(Ci
k, query vertex)

10: for
(
τ i, vi

)
∈ vk do

11: if ∃τ j ∈ v�, τ
i ≤ τ j then

12: continue
13: v�.append(GETPOLICY(vk, τ i))

14: function GETSTEP(C, v)
Queries the subplanner defined by C to find a solution
to the associated subproblem starting from v. Returns
the coordinate of the first step in the solution.

Whenever a (τ i, vi) pair is generated, test if τ i ∈ Vtm
and vi = vif . If so, replace τ i with τ igl. If τ igl is not in
the current subproblem, note the action but do not add
(τ igl, v

i) to the limited neighbor.

(Standley 2010), a variant of A* tuned for multiagent path
finding, instead of basic A*. The algorithm CMS remains
the same conceptually, requiring only minor implementation
changes.

Recursive CMS

CMS couples planning for all teams in the coupled set,
even when there are multiple physically separated collisions.
Consider the task graph given in Figure 1. If τ1tm was found
to conflict with τ4tm, and τ2tm was found to conflict with τ3tm,
then CMS would consider all possible actions for the set of
teams {τ1tm, τ2tm, τ3tm, τ4tm}. If each team had 5 valid neigh-
bors, the GETNEIGHBORS function would have to generate
54 = 625 neighbors. However in this problem, a planner
should be able to resolve the collision between τ1tm and τ4tm
independently of the collision between τ2tm and τ3tm, where
the teams in each subproblem would only have 52 = 25 pos-
sible combinations of actions.

Recursive Constraint Manifold Subsearch (rCMS) ex-
ploits disjoint subproblems using a similar approach to rM*
(Wagner and Choset 2011). The conflict set is split into a
set of conflict set elements, where each conflict set element
contains a disjoint set of conflicting teams. When rCMS ex-
pands a vertex in the search graph, it generates a single lim-
ited neighbor for each vertex by recursively calling subplan-
ners to compute a partial solution that resolves the conflicts
contained in each conflict set element separately. This oper-
ation resembles temporarily merging the teams that can help

resolve a given conflict into a single meta-agent, then com-
puting a policy for that meta-agent. rCMS then combines the
partial solutions to generate a single combinations of actions
(neighbor) for the full system. The challenge in rCMS is to
identify the proper subproblems to solve for each conflict.

The subproblems defined by the conflict set elements
must satisfy three properties: they must contain disjoint sets
of teams, they must contain all alternate paths for the teams
capable of resolving the conflict, and when their solutions
are composed into a solution for the full problem any re-
maining conflicts must not be dominated by any of the ex-
isting conflict set elements. The first property ensures that
the subproblems specify a unique action for each team. The
second property ensures that the resolution of each conflict
will be optimal, and the third will ensure that rCMS will al-
ways make progress in finding a solution to the full problem.

The subproblem defined by a conflict set element Ci must
contain all teams which can influence the resolution of said
collision, as identified by Lemma 1. The subproblem is thus
defined by the subgraph of the task graph induced by the
resolve set Tres

(
Ci

)

Tres

(
Ci
)
=
{
vjtask|v

j
task < successor

(
Ci
)
∨ vjtask ≤ Ci

}
.

(2)
We term the result the subproblem task graph. The subprob-
lem is formed from the specification of the full problem by
removing any team that is not in the subproblem task graph.
Note that this may change the output teams of some tran-
sition action. In the case that a transition action in the sub-
problem task graph has no output teams, or τ itm is in the
subproblem task graph but τ igl is not, then the transition ac-
tion (respectively the action taking τ itm to its goal vertex)
remains part of the solution, but the output teams (resp. τ igl)
are not generated.

A subproblem is solved once rCMS finds a vertex which
either has no active teams, or every active team is at its goal
vertex and has no successor in the full task graph (i.e. is a ter-
minal team). Such a vertex would occur after every team in
the conflict set has taken its transition action. Because a solu-
tion to a subproblem is guaranteed to be collision free, this
stopping criteria ensures that the path for the full problem
formed by composing the solutions to the subproblems will
not contain any conflicts dominated by an existing conflict
set element. As a result, the composed path will either by
collision free, and thus a valid solution to the full problem,
or will contain a conflict that defines a larger subproblem,
ensuring that rCMS will always make forward progress.

Finally, given a set of conflicts, rCMS must ensure that the
subproblems called to resolve the conflicts are disjoint, to
ensure that the path chosen for each team is unique. There-
fore, rCMS merges conflict set elements, and thus their as-
sociated subproblems, if the coupled sets computed for the
conflict set elements according to Equation 1 overlap. Con-
sider the following example using the task graph in Fig-
ure 1. Assume that rCMS has found a conflict between τ1tm
and τ5gl, and a second conflict between τ6gl and τ7tm, lead-
ing to the conflict set {{τ1tm, τ5gl}, {τ6gl, τ7tm}}. rCMS will
then backtrack to consider alternate paths from vertices in

59

the search graph that precede the conflict. The subprob-
lems for the two conflict set elements overlap, as τ4tm is
dominated by both conflict set elements. However, rCMS
only cares about the portion of the subproblem from the
point where it queries the subproblem and the goal. There-
fore, if rCMS expands a vertex vk whose active teams are
{τ1tm, τ5gl, τ

6
tm, τ7tm} the two subproblems are effectively dis-

joint. However, if rCMS backtracks to a vertex v� whose
active teams are {τ1tm, τ4gl, τ

7
tm} τ4 would be in the subprob-

lems associated with both conflict set elements, thus the con-
flict set elements must be merged at v�.

We will now provide an algorithmic description of rCMS.
rCMS starts with a single subplanner which is assigned to
solve the full problem. It calls the FINDPATH and EXPAND
functions described in Algorithms 1 and 2 with minor mod-
ifications. The ISGOAL function is altered to return true if a
vertex contains no active teams or all teams are at their goal
configuration with no successor in the task graph of the full
problem, not the subproblem. EXPAND (Algorithm 2) uses
modified versions of the COLLISION and BACKPROPAGATE
subroutines that account for the conflict set now being a set
of conflict set elements. Specifically, COLLISION returns a
set of conflict set elements corresponding to seperate con-
flicts between teams, and when BACKPROPAGATE adds C to
Ck it takes the union of the two sets, then merges any conflict
set elements whose coupled sets at vk overlap. The primary
difference is that EXPAND calls GETNEIGHBORSRECUR-
SIVE (Algorithm 5) function to generate the limited neigh-
bors, which contains most of the rCMS specific logic.

When generating the neighbors of vk GETNEIGH-
BORSRECURSIVE first checks whether Ck contains a sin-
gle conflict set element containing all of the active teams
at vk. If so, the recursion has locally reached a base case
and planning cannot be further delegated to smaller subplan-
ners. Therefore, the subplanner calls GETNEIGHBORS to
generate the limited neighbors by enumerating all possible
actions. Otherwise the rCMS subplanner iterates over each
conflict set element Ci

k and calls the appropriate subplanner
to find a solution to the subproblem defined by Ci

k. Once
a solution has been computed for each subproblem, a sin-
gle limited neighbor is generated by combining the next step
specified by each partial solution with the next step along the
individual policy for each team not part of a subproblem. If
any subproblem does not have a solution from vk, then the
goal is not reachable from vk and GETNEIGHBORSRECUR-
SIVE returns an empty set.

CMS and rCMS are complete and will return minimal cost
paths. The proofs generally follow those for M* (Wagner
and Choset 2011), and are given in full in (Wagner 2015).

Results

We validate the performance of CMS and rCMS in simu-
lation. Teams of three robots each must move large, rigid,
rectangular loads from fixed initial configurations to fixed
destination. The load may not contact any object aside from
the robots carrying the load. The constraint manifolds cor-
responding to the tasks are diffeomorphic to SE(2). When a
robot is in a singleton team it moves on an 8-connected grid

Figure 2: Typical random environment with 20% obstacle
coverage. The empty squares are obstacles. The colored
squares are individual robots, and the long rectangles teams
of three robots carrying a heavy load. The configuration of
teams is taken from halfway through a path found by inflated
rCMS with ε = 3 for a problem involving 102 robots in 34
teams.

where waiting as well as vertical and horizontal movement
costs 1, while diagonal movements cost

√
2. A robot may

wait for zero cost at its final destination or at the start con-
figuration of its next task if the other robots assigned to the
task are not yet in position. The manifold graphs for teams of
three robots carrying a load restrict the central robot to a sim-
ilar 8-connected grids. The robots at either end of the load
can rotate about the central robot in increments of ±45◦. Ro-
tation incurs cost 3, while translation incurs 3 times the cost
of a single robot translating. To simplify the problem, the
loads are assumed to be removed from the workspace after
being delivered by a team.

Tests were run in randomly generated 80x80 grid worlds.
Approximately 20% obstacle coverage was generated by
randomly placing 320 2x2 obstacles in the workspace with
overlaps permitted. The robot and load initial and final goal
configurations were randomly generated, subject to the con-
straint that each task be feasible in isolation (Figure 2).
Robots were grouped in sets of three, with every such team
assigned 1, 3, or 5 tasks3. Simulations included up to 120
robots. 50 random trials were generated for each set of test
parameters. CMS and rCMS were both run with a heuristic
inflation factor of 3. Each trial was given 5 minutes to find a
solution before the trial was marked as a failure (Figure 3).
All simulations were implemented in Python and run on a
Intel Core i7 processor clocked at 3.30 GHz.

rCMS dramatically outperformed CMS with the success
rate of rCMS on problems involving 3 to 5 tasks per team
equivalent to the performance of CMS with only a single
task per team (Figure 3). The environments were relatively

3We tested randomly assigning the robots to each task, which
increased the time the robots spent waiting for other robots, and
made the problem easier.

60

Figure 3: Comparison of CMS and rCMS performance. All
trials used an inflation factor of 3. The top plot shows the
percentage of trials for which a solution was found within 5
minutes, while the bottom plot gives the median time until a
solution was found.

large, which meant there were often multiple independent
sets of interacting teams. rCMS was therefore able to find
independent subproblems, which could be solved more effi-
ciently.

We then tested the impact of varying the inflation factor
of rCMS (Figure 4), with each team assigned 3 tasks. As ex-
pected, rCMS was unable to solve anything but the simplest
problems optimally (ε = 1). When ε = 1 most collisions
will force M* to re-expand the root vertex of the search tree,
where the coupled set has maximal size. Setting ε = 1.1
sets a very soft limit to backtracking; to prevent incurring
one extra unit of cost, rCMS would be willing to backtrack
approximately 10/n steps in the search tree, where n is the
number of teams that have not reached their final goal. Lim-
iting backtracking effectively decouples collisions that take
place at different times, significantly reducing the cost of
finding a solution. When the inflation factor is increased to
ε = 3, rCMS will come close to greedily minimizing the
heuristic value, primarily backtracking to resolve dead-ends
rather than reduce path cost. As a result, there is a substan-
tial improvement in success rate, and rCMS is able to solve
some problems involving 102 robots in 34 teams, where as
with ε = 1.1 rCMS was only able to solve systems with 75
robots in 25 teams. Increasing ε to 10 results in little change
in performance, as rCMS was already operating in a close to
greedy manner.

Conclusion and Future Work

We presented a new formulation for CMS that uses a task
graph to reason about the dependencies between teams. The
reformulated algorithm is simpler than the existing formula-
tion, and allows more general cost functions and task sched-
ules. We then presented rCMS, a variant of CMS that de-

Figure 4: Performance of rCMS with varying inflation fac-
tors. Each team was assigned 3 tasks, in worlds with 20%
obstacle coverage. The top plot shows the percentage of tri-
als for which a solution was found within 5 minutes, while
the bottom plot gives the median time until a solution was
found.

couples planning for disjoint sets of interacting teams. Sim-
ulation studies showed that rCMS significantly outperforms
CMS.

There are a number of avenues for future work. CMS
has been implemented for only a single cooperative task:
multiple mobile robots carrying a single object. In the fu-
ture, we will pursue techniques for automatically construct-
ing the constraint manifold (Berenson et al. 2009) (Siméon
et al. 2004) (Cohen, Chitta, and Likhachev 2013) (Sucan
and Kavraki 2011) to apply CMS to more types of tasks.
Of special interest is the task of cooperatively carrying an
object through an environment that is sufficiently cluttered
that robots must disconnect and reconnect to the object to
clear obstacles (Lindzey et al. 2014), potentially resting the
load on the ground temporarily.

To simplify the problem, we assumed that actions of
teams do not impact the environment, even when the teams
move large objects. We believe that this assumption can be
removed by treating environmental features that may be ma-
nipulated by robots as dummy teams that contain no robots.
CMS will then naturally account for dependencies between
the teams that manipulate the environmental features and the
teams that may be impeded by the environmental features.

Finally, CMS currently assumes that each team can wait
at its goal configuration for zero cost, which is necessary
to properly decouple planning between teams. We believe
identifying lower bounds on arrival times of different teams
at their goal configurations will allow generalization to cost
functions that penalize robots for waiting at their goals.

This work was supported by ONR Subcontract to the Ap-
plied Physics Lab entitled ”Autonomous Unmanned Vehi-
cles Applied Research Program” Prime Contract Number
N00024-13-D-6400

61

References

Alonso-Mora, J.; Knepper, R. A.; Siegwart, R.; and Rus, D.
2015. Local Motion Planning for Collaborative Multi-Robot
Manipulation of Deformable Objects. In IEEE International
Conference on Robotics and Automation, 5495–5502.
Ayanian, N., and Kumar, V. 2010. Decentralized feedback
controllers for multi-agent teams in environments with ob-
stacles. IEEE Transactions on Robotics 26(5):878–887.
Ayanian, N. 2011. Coordination of Multirobot Teams and
Groups in Constrained Environments : Models , Abstrac-
tions , and Control Policies. Ph.D. Dissertation, University
of Pennsylvania.
Belta, C., and Kumar, V. 2001. Motion generation for for-
mations of robots: a geometric approach. In IEEE Interna-
tional Conference on Robotics and Automation, number 3,
1245–1250.
Berenson, D.; Srinivasa, S. S.; Ferguson, D.; and Kuffner,
J. J. 2009. Manipulation planning on constraint manifolds.
In IEEE International Conference on Robotics and Automa-
tion, volume i, 625–632. Ieee.
Bhattacharya, S.; Likhachev, M.; and Kumar, V. 2010.
Multi-agent path planning with multiple tasks and distance
constraints. In IEEE International Conference on Robotics
and Automation, 953–959. Ieee.
Burridge, R.; Rizzi, A. A.; and Koditschek, D. E. 1999. Se-
quential composition of dynamically dexterous robot behav-
iors. International Journal of Robotics Research 18(6):534–
555.
Cohen, B.; Chitta, S.; and Likhachev, M. 2013. Single-
and dual-arm motion planning with heuristic search. The
International Journal of Robotics Research.
Desai, J. P., and Kumar, V. 1999. Motion planning for co-
operating mobile manipulators. Journal of Robotic Systems
16(10):557–579.
Desaraju, V. R., and How, J. P. 2012. Decentralized path
planning for multi-agent teams with complex constraints.
Autonomous Robots 32(4):385–403.
Felner, A.; Goldenberg, M.; Sharon, G.; Stern, R.; Beja, T.;
and Holte, R. C. 2012. Partial-Expansion A * with Selective
Node Generation. In AAAI Conf, 471–477.
Graham, R. L.; Lawler, E. L.; Lenstra, J. K.; and Kan, a.
H. G. R. 1979. Optimization and Approximation in Deter-
ministic Sequencing and Scheduling: a Survey. Annals of
Discrete Mathematics 5(C):287–326.
Hu, T. C. 1961. Parallel Sequencing and Assembly Line
Problems. Operations Research 9(6):841–848.
Koga, Y., and Latombe, J.-C. 1994. On multi-arm ma-
nipulation planning. In IEEE International Conference on
Robotics and Automation, 945–952. San Diego, CA: IEEE
Comput. Soc. Press.
Leonard, N. E., and Fiorelli, E. 2001. Virtual Leaders ,
Artificial Potentials and Coordinated Control of Groups. In
IEEE Conference on Decision and Control, number Decem-
ber, 2968–2973.

Lewis, M. A., and Tan, K.-h. 1997. High Precision For-
mation Control of Mobile Robots Using Virtual Structures.
Autonomous Robots 403:387–403.
Lindzey, L.; Knepper, R. A.; Choset, H.; and Srinivasa, S. S.
2014. The Feasible Transition Graph: Encoding Topology
and Manipulation Constraints for Multirobot Push-Planning.
In Workshop on the Algorithmic Foundations of Robotics,
16.
Pohl, I. 1973. The avoidance of (relative) catastrophe,
heuristic competence, genuine dynamic weighting and com-
putational issues in heuristic problem solving. In Inter-
national Joint Conference on Artificial intelligence, 12–17.
San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc.
Rus, D.; Donald, B.; and Jennings, J. 1995. Moving Furni-
ture with Teams of Autonomous Robots. In IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems,
235–242.
Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R.
2012. Meta-Agent Conflict-Based Search For Optimal
Multi-Agent Path Finding. Symposium on Combinatorial
Search 97–104.
Siméon, T.; Cortés, J.; Sahbani, A.; and Laumond, J.-P.
2004. A general manipulation task planner. In Boissonnat,
J.-D.; Burdick, J.; Goldberg, K.; and Hutchinson, S. A., eds.,
Workshop on the Algorithmic Foundations of Robotics, vol-
ume 7 of Springer Tracts in Advanced Robotics, 311–327.
Springer Berlin Heidelberg.
Spears, W., and Gordon, D. 1999. Using artificial physics to
control agents. In International Conference on Information
Intelligence and Systems, 281–288.
Standley, T. 2010. Finding Optimal Solutions to Coopera-
tive Pathfinding Problems. In AAAI Conference on Artificial
Intelligence.
Sucan, I. A., and Kavraki, L. E. 2011. On the advantages of
task motion multigraphs for efficient mobile manipulation.
In IEEE/RSJ International Conference on Intelligent Robots
and Systems, 4621–4626. IEEE.
Wagner, G., and Choset, H. 2011. M*: A Complete Mul-
tirobot Path Planning Algorithm with Performance Bounds.
In IEEE International Conference on Intelligent Robots and
Systems.
Wagner, G.; Kim, J. I.; Urban, K.; and Choset, H. 2015.
Constraint Manifold Subsearch for Multirobot Path Plan-
ning with Cooperative Tasks. In IEEE International Con-
ference on Robotics and Automation, 6094–6100.
Wagner, G. 2015. Subdimensional Expansion: A Frame-
work for Computationally Tractable Multirobot Path Plan-
ning. Phd, Carnegie Mellon University.
Yang, P.; Freeman, R. A.; and Lynch, K. M. 2008. Multi-
agent coordination by decentralized estimation and con-
trol. IEEE Transactions on Automatic Control 53(11):2480–
2496.

62

