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Abstract— Conventional path planning algorithms compute
a single path through the configuration space. There is no
guarantee that a physical robot will be able to track the
trajectory while avoiding collisions, particularly in the presence
of environmental perturbations and errors in the process model.
Sequential composition combines planning and control by com-
puting a sequence of controllers to execute rather than a single
trajectory, offering greater safety guarantees. In this paper, we
apply sequential composition to multirobot systems in a scalable
fashion using M*, an advanced multirobot path planning
algorithm. Controllers will vary in size and geometry, and thus
take different amounts of time to execute. To handle these
differences, we introduce the time augmented joint prepares
graph and the approximate time augmented joint prepares
graph which simplifies implementation by discretizing time. We
validate our approach in a mixed reality test framework.

I. INTRODUCTION

Conventional path planning algorithms compute a single
trajectory in the configuration space of the system. Envi-
ronmental perturbations and errors in the process model
can cause the system to depart from the planned trajec-
tory. Running a trajectory-tracking controller can provide
robustness to small perturbations. However, because the
planner only considers the nominal trajectory, there is no
guarantee that the trajectory-tracking controller will avoid
collisions while recovering from larger perturbations (Figure
1a). Sequential composition seeks to produce paths that are
robust to perturbations by planning not in the configuration
space of the system, but rather over a set of controllers
[3, 4, 5, 9, 10, 11]. The resulting plan is a sequence of
controllers, chosen such that the goal set of each controller
lies in the domain of attraction of the next controller (Figure
1b), defining a plan over a “thick” region of the configuration
space, instead of a single “thin” trajectory. As long as the
system remains within the domains of the planned controllers
safety is guaranteed. Furthermore, the system can readily
detect when it is subject to a large enough perturbation that
the original sequence of controllers can no longer guarantee
safety, triggering replanning.

Computing a sequential composition plan is a multi-step
affair. First, a set of controllers with well defined domains
must be deployed in the environment. The domain of a
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(a) Path planning (b) Sequential composition

Fig. 1: (a) Conventional path planning algorithms compute a single
trajectory in configuration space (black arrow). When a robot is
perturbed from its planned trajectory, there is no guarantee that
a trajectory tracking controller will avoid collisions. (b) Sequential
composition planners [4, 5] compute a plan consisting of a sequence
of controllers. In this example the initial path is yellow, purple,
blue. Safety is guaranteed as long as the robot remains within the
domains of the planned controllers, and perturbations large enough
to invalidate the plan can be easily detected and trigger replanning.

controller is an invariant subset1 of the domain of attraction
of the controller that lies entirely within the free config-
uration space. Controllers should be deployed so that the
union of their domains cover as large a fraction of the free
configuration space as possible.

Second, the order in which controllers can be executed
is described by a prepares graph. Controller A is said to
prepare controller B, denoted A � B,2 if the goal set of
A is a subset of the domain of B. A single controller can
prepare multiple controllers. Once a robot reaches the goal
set of its current controller, it will be in the domain of all
the prepared controllers. The robot then uses a precomputed
path or policy to choose which controller to execute next.
The prepares graph is a directed graph that captures the
prepares relationship between controllers (Figure 2). Each
controller is represented as a vertex in the prepares graph
whose out-neighbors are the prepared controllers. Thus a
feasible sequence of controllers can be computed by finding
a path in the prepares graph.

Prior work on sequential composition has primarily fo-
cused on single robot systems, which are characterized by
small prepares graphs. A policy over the entire prepares
graph can then be computed using standard graph-search
algorithms [3, 4, 5, 9, 10, 11], resulting in a control policy

1If a robot starts in the domain of a controller it will remain within the
domain of the controller, although in an abuse of terminology we allow the
robot to leave the domain of the controller if it does so by passing through
the goal set of the controller.

2The prepares relation superficially resembles a partial ordering but may
contain cycles. The direction the prepares symbol points follows the usage
of [4] and is opposite the standard partial ordering symbol.
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(a) Controllers (b) Prepares graph

Fig. 2: (a) An example of a controller deployment where A � C,
B � C, C � D and C � E. (b) The associated prepares graph.

defined over a much larger fraction of the free configuration
space than would be possible with a single conventional
controller.

The prepares graphs associated with multirobot systems
are exponentially larger than those for single robot systems.
Ayanian and Kumar [1, 2] were able to apply sequential com-
position to multirobot systems by constructing multirobot
controllers then finding a single path through the prepares
graph using A*, rather than computing a full policy over
the entire graph, but were still limited to small numbers of
robots due to the exponential complexity of finding even
a single path. While not using the language of sequential
composition, Ulusoy et al. [12] describe an approach for
using Linear Temporal Logic (LTL) solvers to coordinate
robots executing single robot primitives, explicitly allowing
for the primitives to be controllers. They also introduced
region automata to handle primitives with different durations.
However, the computational cost of the LTL solver limited
the approach to a system of 2 robots.

In this paper, we present an approach to robust multirobot
path planning based on combining the concepts of sequential
composition with high-performance multirobot path planning
algorithms. Our basic approach is to compute a prepares
graph for each robot, then take the direct product to define
a joint prepares graph for the system as a whole. We then
use a multirobot path planning algorithm called M* [14, 15]
to find a path in the joint prepares graph which assigns a
sequence of single robot controllers to each robot.

M* assumes that all robots move synchronously, i.e. that
the actions associated with each edge in the search graph
take the same amount of time to execute. However, robots
will take varying amounts of time to execute controllers with
different geometries and sizes. We therefore introduce the
Time Augmented Joint Prepares Graph (TAJPG), inspired by
region automata [12], which captures differences in average
execution time for different controllers, thus improving the
feasibility of paths computed by M*. We then describe
the Approximate Time Augmented Joint Prepares Graph
(ATAJPG) that simplifies the integration of TAJPG with mul-
tirobot path planning algorithms such as M* by discretizing
time. We validate our approach on a mixed-reality test bed,
combining physical and simulated robots.

II. MULTIROBOT SEQUENTIAL COMPOSITION

Consider system of n potentially inhomogeneous robots
ri, i ∈ {1, . . . n}. Robot ri has a configuration space Qi

and dynamics F i : Qi × U i → T Qi, where U i is the space
of control inputs of ri and T Qi is the tangent bundle of
Qi that describes the possible velocities of ri. A controller
for ri fixes the control input at every point in its domain
which, combined with the dynamics function, produces a
mapping Cik : Dik → T Qi where Dik ⊂ Qifree is the domain
of the controller in the free configuration space. The flow of
the controller ΦCi

k
: Qi × R → Qi maps the configuration

qi of ri at time zero to the configuration it would occupy
ΦCi

k

(
qi, t

)
at time t under the influence of controller Cik. Let

the set of controllers for ri be denoted Ci.
Each controller Cik has a goal set Gik ⊂ Dik. The flow of

valid controller takes every point in its domain to the goal
set in finite time

∀qi ∈ Dik ∃T ≥ 0 s.t ΦCi
k

(
qi, T

)
∈ Gik∧

∀t ∈ [0, T ] ΦCi
k

(
qi, t

)
∈ Dik

A controller Cik prepares a different controller Ci`, k 6= `,
if Gik ⊂ Di`, denoted Cik � Ci`. Cik prepares itself if Gik is an
invariant set or if a robot executing Cik will always revisit
Gik after finite time without leaving Dik. We assume that
each controller prepares at least one controller, potentially
itself, so that a robot will always have at least one valid
controller to execute. We term the controllers that prepare a
given controller Cik the preparing controllers of Cik.

The prepares relations between a set of controllers Ci for
a robot ri are described by the prepares graph Gi, where
each vertex Gi represents a controller in Ci. A directed edge
connects Cik to Ci` if and only if Cik � Ci`.

The joint prepares graph of the multirobot system is
the direct product of the individual prepares graphs G =∏n
i=1G

i. Each vertex vk in G is associated with a tuple of
controllers

(
C1k, . . . , Cnk

)
, which assigns ri to execute Cik. An

edge connects
(
C1k, . . . , Cnk

)
to
(
C1` , . . . , Cn`

)
if and only if

Cik � Ci` for all i ∈ {1, . . . n}. Let vf be associated with a
tuple of controllers that stabilize the robots at their ultimate
goal states.

Once the joint prepares graph has been constructed, we
use a multirobot path planning algorithm called M* [14]
to find a path in the joint prepares graph that describes
the sequence of controllers to be executed by each robot.
M* treats robots as colliding if they simultaneously execute
potentially conflicting controllers. Two controllers potentially
conflict if there is at least one pair of configurations in the
domains of the controllers that would lead to a robot-robot
collision.

Specifying the vertex vs that represents the initial state of
the system requires care. Each robot may start in the domain
of multiple controllers. Thus, the system could start from
any element of a set of exponentially many vertices in the
joint prepares graph which may be too large to explicitly
construct if the number of robots is large. Instead, the initial
vertex vs is associated with a tuple of dummy controllers
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(a) Different controller ge-
ometries

(b) Different preparing con-
troller

(c) Different positions in goal
set of preparing controller

(d) Different path due to noise
and modeling errors

Fig. 3: Sources of variation in controller duration. (a) Larger con-
trollers will typically have longer durations than smaller controllers.
(b) The duration of a single controller will depend on the preparing
controller and (c) where in the goal set of the preparing controller
the robot starts executing the controller. (d) Finally, perturbations
of the trajectory during execution ensure that the duration will not
be exactly the same even if the robot starts twice in exactly the
same spot.

(C1dummy, . . . , Cndummy) where Cidummy prepares every controller
Cik ∈ Ci for which qis ∈ Dik. M* will then use heuristics
based on the cost of paths for individual robots to construct
only a necessary subset of the possible initial combinations
of controllers.

III. SYNCHRONIZATION ISSUES

The construction of the joint prepares graph implicitly
contains an assumption that each robot will transition from
one controller to its successor at the same time, which would
imply that every controller takes the same amount of time
to be executed. However, differences in controller geometry
and execution errors ensure that the time required to traverse
a controller, termed the duration of a controller, not only
differs among controllers, but has stochastic variation. There
are several reasons for differences in duration

1) Controllers have domains of different shapes and com-
mand different velocities, and thus require different
amounts of time to traverse (Figure 3a).

2) The goal set of different preparing controllers will be
at different distances from the goal set of the controller.
Therefore, the duration of a controller will depend
upon the preparing controller (Figure 3b).

3) The time a robot requires to execute a controller from
different configurations within the goal set of the same
preparing controller will be different (Figure 3c).

4) A robot will take different amounts of time to exe-
cute the same controller from the same starting point
due to environmental perturbations, noise in position
estimates, and other stochastic influences (Figure 3d).

Reasons 1 and 2 are deterministic in that their contribution to
the duration is due solely upon the geometry of the controller

and its preparing controllers.3

Reasons 3 and 4 are inherently stochastic. Reason 3 is
inherent to the fact that sequential composition reasons about
controllers, rather than specific robot configurations, while 4
is inherent to non-ideal robots. Properly handling stochastic
variation in controller duration requires scalable multirobot
path planning in the face of uncertainty, which is left to future
work.

IV. TIME AUGMENTED PREPARES GRAPH

The Time Augmented Joint Prepares Graph (TAJPG) is in-
tended to account for deterministic differences in the duration
of controllers (Section III) in a similar fashion to the region
automata of Ulusoy et al. [12]. To do so, the TAJPG tracks
the time until each robot is expected to complete its assigned
controller, and only assigns new controllers to robots when
they complete their previously assigned controllers. To this
end, we define the nominal duration tnom : Ci × Ci → R+

over the set of all deployed controllers Ci for ri, where
tnom

(
Cik, Ci`

)
is the time that ri is expected to require to

execute controller Cik ∈ Ci when prepared by Ci`.
A vertex vk in the TAJPG is a set of n ordered pairs(
Cik, tik

)
, where Cik ∈ Ci is the controller assigned to ri, and

tik is the expected time-to-go before ri will finish executing
Cik. The neighbors of vk assign new controllers to the robots
that will finish their current controllers first, and update
the time-to-go for the robots that will take longer to finish
executing their assigned controllers. More precisely, denote
the minimal time-to-go for any robot as δtk = mini t

i
k. The

neighbors of vk are thenv`
∣∣∣∣∣ vi` =

(
Cim, tnom

(
Cim, Cik

))
tik = δtk ∧ Cik � Cim

vi` =
(
Cik, tik − δtk

)
tik > δtk

 .

(1)
An example of the TAJPG is given in Figure 4. The

controllers for robot r1 have the prepares relation A � B,
and the controllers for r2 have the relation C � D � E
(Figure 4a). Controllers A, B, and E have a nominal duration
of 2 units, while controllers C and D have a nominal duration
of 1 unit. The resulting joint prepares graph is given by
(A,C) → (B,D) → (B,E) (Figure 4b). The transition
(A,C) → (B,D) is not feasible, because A takes longer
to execute than C. The TAJPG avoids such problems. The
initial vertex v1 is given by ((A, 2), (C, 1)). Robot r2 will
finish executing C in 1 unit of time, while r1 requires 2
units of time to execute A. Therefore δt1 = 1. According to
equation 1, the neighbor of v1 is v2 = ((A, 1), (D, 1)), as the
nominal duration of D is 1 unit, while r1 has already been
executing controller A for 1 unit of time out of a nominal
duration of 2 units. Thus, δt2 = 1, with r1 and r2 finishing
their current controllers at the same time. Therefore, the out-
neighbor of v2 is v3 = ((B, 2), (E, 2)).

While M* could be run on the TAJPG, all existing
implementations of M* assume that the graph describing the
full system is the product of single robot graphs, which is

3Assuming that the goal set of each controller is small.
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(a) Single robot controllers

(b) Joint prepares graph

(c) Time augmented joint prepares graph

Fig. 4: (a) Robots r1 and r2 have different controller sets and
prepares graphs. The larger controllers A, B, and E have a nominal
duration of 2, while the smaller controllers C and D can be
executed in 1 time unit. (b) The joint prepares graph is the direct
product of the single robot prepares graphs, and thus ignores
differences in nominal duration of the controllers. The transition
(A,C)→ (B,D) is not realistic, because A takes longer to execute
than C. (c) The time augmented joint prepares graph is formed by
augmenting each controller with a time-to-go.

Fig. 5: Example of a approximate time augmented prepares graph
with a time resolution of 1 unit. The nominal duration of controller
C is 5 units when prepared by controller A and 3 units when
prepared by controller B.

not the case for the TAJPG. To simplify implementation, we
introduce the Approximate Time Augmented Joint Prepares
Graph (ATAJPG), which represents the execution of con-
trollers using a fixed temporal resolution. The ATAJPG is the
direct product of single robot approximate time augmented
prepares graphs, in which each controller is represented
by a number of vertices determined by its largest nominal
duration, recalling that the nominal duration of a controller
depends upon its preparing controller. If a controller has
a maximal nominal duration of 5 seconds and the time
resolution is 1 second, then the controller is represented in
the approximate time augmented prepares graph by 5 vertices
(Figure 5). The vertices representing a single controller are

(a) (b)

Fig. 6: (a) Parallax Scribbler robot as used in experiments. (b) To
simplify control design, the body frame was placed at the front of
the robot. The scribbler can then be treated as a fully actuated robot
in position with heading left uncontrolled.

arranged in a chain, and annotated with the time to go.
The last vertex associated with controller Cik (smallest time
to go) is connected to the vertices representing controllers
Ci`, Cik � Ci` with a time-to-go equal to tnom

(
Ci`, Cik

)
.

The ATAJPG has up to a constant factor more vertices
than the TAJPG and joint prepares graph, where the factor
is the maximum number of vertices used to represent a single
controller. However, the branching factor of the graph does
not increase because all but one of the vertices that represent
a given controller have a single neighbor. As a result the
worst case computational complexity of finding paths with
M* in the ATAJPG will be within a constant factor of finding
paths in the TAJPG or joint prepares graph. However, the run
time of M* on a specific problem is sensitive to changes in
the representation of the problem, even if the representations
are functionally equivalent. As a result, the run time of M*
is likely to vary significantly and inconsistently when run on
the joint prepares graph, TAJPG and ATAJPG.

V. EXPERIMENTAL SETUP

The purpose of applying sequential composition to multi-
robot path planning is to provide robustness in the face of
perturbations during plan execution, which makes validation
on real robots essential. Logistical constraints limited the
number of physical robots that could be run simultaneously
and the size of the available workspace. Therefore, exper-
iments were run in a mixed reality framework, combining
physical and simulated robots.

A. Robots

The physical robots were Parallax Scribblers, circular
differential drive robots with a radius of 7.2 cm (Figure
6a). Each robot was connected via Bluetooth to a central
computer that performed all planning and control. Localiza-
tion was provided by an overhead camera tracking Aruco
tags attached to the top of each robot [6]. The server could
optionally synchronize the motion of the robots by reducing
the velocity of the robots that were running fast by a factor of
ση , where σ is the synchronization factor and η is the number
of steps in the plan the robot is ahead of the slowest robot.
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The synchronization factor can be thought of as turning
multiple, single robot controllers into a simple multirobot
controller.

The purpose of this paper is to explore planning for
multiple robots, rather than controller design. Therefore to
simplify controller design we follow [2] and place the body
frame at the front of the robot, instead of directly between the
wheels as in the unicycle model (Figure 6b). With the offset
body frame the Scribbler can be treated as a fully-actuated
planar robot, leaving θ uncontrolled. The kinematics of the
robot in its body frame are then given by[

ξ̇x
ξ̇y

]
= ρwheel

[
1 1
1 −1

] [
ω1

ω2

]
(2)

where ξ̇x and ξ̇y are the body velocities in the x and y
directions, ρwheel is the radius of a wheel and ω1 and
ω2 are the angular velocities of the right and left wheels,
respectively.

B. Controller Design

Controllers are velocity fields in the world frame that
are defined over square domains following the work of
Habets and Van Schuppen [8]. An affine velocity field over
a triangular domain is fully defined by the velocity at the
vertices of the triangle. A continuous, piecewise-affine field
can be generated over a convex polygon by triangulating the
polygon and specifying the velocity at each vertex of the
polygon. To ensure that the robot will only exit the domain
through the goal face, the velocities at the vertices of the
polygon must be chosen to have a positive component in the
direction of the outward pointing normal of the goal face
while pointing into the polygon at every face not adjacent
to the goal face. We choose to rescale the resulting velocity
fields to have constant magnitude.

wait controllers stabilize a robot at the centroid of the
domain using linear attractive fields with magnitude propor-
tional to the distance from the centroid. Each wait controller
is assigned a nominal duration. When a robot begins exe-
cuting a wait controller, it starts a clock and will not begin
executing the next controller in its plan until it has spent at
least the nominal duration in the wait controller.

C. Test Environment

The Scribblers were deployed in a 1.6x1.2 meter
workspace. The workspace was covered with a regular square
grid, where each cell was 0.15 meters on a side, slightly
more than one Scribbler diameter. Up to five controllers
were deployed in each square, four controllers each using
a different face of the square as a goal face, and one wait
controller. Controllers were only constructed if they would
prepare at least one other controller, i.e. the goal face of the
controller must be shared with at least one other square.
A controller prepares every controller in the square that
shares its goal face, except for the controller which would
immediately return the robot to its original square. The
simulated robots were deployed in a workspace centered on
the physical workspace and twice as large.

Controllers are deemed to interfere if they share a vertex.
This guarantees a clearance of two Scribbler radii between
the origins of the body frames of the robots. To guarantee
that no collisions occur a clearance of four radii would
be required. Unfortunately, the workspace for the physical
robots is not large enough to require a four radii clearance.
From a practical standpoint, we have never observed a
collision between robots that were executing controllers that
did not share a vertex.

D. Calibration

Constructing the ATAJPG requires knowledge of the nom-
inal duration of each controller. Calibration was performed
by driving the physical and simulated robots through 10 laps
of a closed course. Non-wait controllers were divided into
two categories depending on the relative geometry of the
controller and its preparing controller: straight and turn. A
controller was labeled a straight controller if its goal face
was parallel to the goal face of its preparing controller,
and was otherwise labeled as a turn controller. Note that
the same controller may be assigned both labels when
prepared by different controllers. The physical robots took
0.85 ± 0.12 seconds to execute a straight controller, and
0.87±0.16 seconds to execute a turn controller. The velocity
of the simulated robots was adjusted so that they executed
a straight controller in an average of 0.88 ± 0.03 seconds
and a turn controller in 0.59± 0.10 seconds. The simulated
robots were more responsive, and could thus cut corners
more aggressively, resulting in reduced time to execute turn
controllers.

We choose to use a time resolution of 0.3 seconds for
the ATAJPG, and set the nominal duration of each controller
to the mean duration for robots with the same duration and
round to the nearest whole number of vertices. The nominal
duration for physical robots executing straight and turn
controllers and for the simulated robots executing straight
controllers was 0.9 seconds, and so these controllers were
represented by three vertices. The simulated robots took
approximately 0.6 seconds to execute a turn controller, and
so those were represented by two vertices.

VI. RESULTS

We tested multirobot sequential composition on problems
involving up to four physical robots and four simulated
robots (Figure 7). The physical robots were placed at the
vertices of a rectangle within the workspace of the physical
robots. The simulated robots were placed at the vertices of
an outer rectangle. The goal for each physical (respectively
simulated) robot was to swap positions with the diametrically
opposite physical (resp. simulated) robot. This induced a
double ‘X’ pattern, leading to mutual interaction between
all robots.

M* uses a heuristic to guide path planning. The heuristic
can be weighted by a factor ε ≥ 1. Doing so generally allows
a plan to be found much more quickly, but may increase
the cost of the resulting path by a factor of up to ε [15].
Previous work on M* showed that the increase in path cost
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Fig. 7: Initial configuration of the eight robots. The empty blue
circles with a red number are the simulated robots. Robots seek to
move to the diametrically opposite position. The squares are the
domains of the controllers used in one solution to the problem.

was generally small, so we used ε = 4 for the mixed reality
tests.

The first experiment focused on the robustness of mul-
tirobot sequential composition in the face of large envi-
ronmental perturbations. In the first trial, we ran just the
four physical robots without external disturbances, using
a synchronization factor of 0.7. The experiment was then
repeated, but during plan execution the experimenter first
shoved the robots with a pole, and then later in the trial
picked up and swapped the positions two pairs of robots (see
the video attachment). Multirobot sequential composition
was able to accurately identify when the perturbations were
large enough to invalidate the previously computed plans
and immediately planned a new path. As a result, the robots
safely avoided collisions, despite robots being unexpectedly
displaced across the whole breadth of the workspace. We
plot the index in the path of the controller being executed by
each robot at every instant in time and the minimal distance
between the centers (not body frames) of the robots (Figure
8). When replanning occurred the controller indices went to
zero. There is one apparent collision in the large perturbation
case (Figure 8b), but that occurred while the robots were
being manually swapped and not while the system was under
control of the planner.

The second experiment investigated the impact of the
ATAJPG using all of the physical and simulated robots. We
tested three conditions; planning on the joint prepares graph
with a synchronization factor of 0.3, planning on the joint
prepares graph with no synchronization, and planning on the
ATAJPG with no synchronization. We ran each condition
three times, however the results for each trial were very
similar so we only plot results for the first trial. Computing
a plan in the joint prepares graph took an average of 0.4
seconds. The plans generated by M* would be safe if
executed exactly as planned. To track how closely the robots
adhere the plan we plot the index in the path of the controller
being executed by each robot at every instant in time and the
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(a) 4 robot trial without perturbations
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(b) 4 robot trial with large perturbations

Fig. 8: (a) The controller indices and minimum distance between
any two robots without shoving/swapping robots and (b) with
shoving/swapping robots. The controller index is the index of the
controller in a robot’s plan that the controller is executing at a given
time. If the robots were perfectly synchronized, they would always
have the same controller index. If robots are closer together than
2 Scribbler radii (red dashed line) they are in collision. The one
apparent collision in (b) occurred while manually swapping robot
positions, and does not represent a failure of the algorithm.

minimal distance between the centers (not body frames) of
the robots (Figure 9).

When M* plans in the joint prepares graph and robots are
run with a synchronization factor of 0.3 the robots remain
almost perfectly synchronized (Figure 9a), and as a result
stay a safe distance from one another. When the synchro-
nization is removed, the simulated robots execute their plans
significantly faster than the physical robots (Figure 9b). The
resulting synchronization errors leads to one grazing collision
between a real and simulated robot at 7 seconds and a
serious collision where a simulated robot almost completely
overlapped a real robot for several seconds starting 10
seconds into the run. We believe that the difference in
speed comes from the simulated robot being able to execute
turn controllers more quickly than physical robots, whereas
planning on the joint prepares graph implicitly assumes that
the time required to execute each controller is the same.

The ATAJPG accounts for deterministic differences in
execution time for different controllers, including whether
they are executed by real or simulated robots. As a result,
even without explicit synchronization the robots are almost as
coordinated when executing a plan computed in the ATAJPG
(Figure 9c) as they were when executing a plan computed
on the joint prepares graph with active synchronization
(Figure 9a). We note that the physical robots showed great
consistency; the paths followed in all three replicates of a
given trial were nearly identical which likely contributed to
the efficacy of planning on the ATAJPG. Planning on the
ATAJPG took 4.5 seconds on average, 11 times as long
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(a) M* planning on the joint prepares graph with 0.3 synchroniza-
tion factor
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(b) M* planning on the joint prepares graph with no synchronization
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(c) M* planning on the ATAJPG with no synchronization

Fig. 9: The controller indices and minimum distance between any
two robots. The controller index is the index of the controller in a
robot’s plan that the controller is executing at a given time. If the
robots were perfectly synchronized, they would always have the
same controller index. If robots are closer together than 2 Scribbler
radii (red dashed line) they are in collision.

as planning in the joint prepares graph even though each
controller was represented by at most 3 vertices in the
ATAJPG. We attribute the extra run time to M* identifying
and resolving more potential collisions when planning in the
ATAJPG, taking more time to plan but producing more robust
paths.

We then ran experiments to examine how M* and the ATA-
JPG scale as the number of robots increase. We generated 10
sets of random start and goal configurations for systems of
between 6 and 24 simulated robots using the same controllers
as the simulated robots in the mixed reality experiments.
Only simulated robots were used to facilitate running many
trials and because the workspace for the physical robots was
too small to accommodate large numbers of robots. We then
ran M* with ε values of 1, 1.9, and 4, limiting initial planning
time to 10 minutes. The percentage of trials for which M*
was able to find a solution within the time limit is plotted in
Figure 10a. As expected, higher weighting factors allowed
M* to solve substantially larger problems.

We then plot the percentage of trials that feature at least
one robot-robot collision (Figure 10b). The plans generated
by M* with a large heuristic weight are substantially less
safe than those with a low heuristic weight. Recall that robots

(a) Planning Performance (b) Trials with Collisions

Fig. 10: Performance of M* and the ATAJPG in scaling experiments
of between 6 and 24 simulated robots. (a) shows the percentage of
trials for which M* was able to find a solution within 10 minutes
using a heuristic weight ε of 1, 1.9, and 4.

are not allowed to occupy adjacent controllers. As a result a
robot must take two steps to one side to get out of the way
of another robot. When ε = 4 M* operates in a near-greedy
fashion, and it is sometimes locally cheaper for one robot
to push a second robot backwards, rather than having both
robots take a step to the side to pass around each other. This
results in a longer path in which the robots remain in close
proximity to one another for a prolonged period of time.
As a result, non-deterministic variation in controller duration
as well as modeling errors in the ATAJPG become more
important leading to collisions between robots. In contrast,
when ε is smaller M* is less greedy and spends more
time looking for lower-cost paths, producing shorter paths
where robots remain in proximity to one another for shorter
periods of time. These better paths reduce the importance of
non-deterministic variation in controller duration, leading to
greater safety.

VII. CONCLUSIONS

In this paper, we showed how to combine planning and
control for systems of multiple robots using the sequen-
tial composition framework and M*. We adapted region
automata to the multirobot sequential composition frame-
work to address deterministic differences in the duration of
controllers, producing the TAJPG. To allow direct reuse of
existing implementations of M* we show that the TAJPG
can be approximated as the direct product of single robot
approximate time augmented prepares graphs, producing the
ATAJPG.

We validate our results on experiments involving eight
agents, of which four were physical robots and four were
simulated robots. We show that multirobot sequential com-
position is robust to large perturbations, including swapping
the positions of robots on opposite sides of the workspace.
Furthermore, planning on the ATAJPG generated plans that
could be safely executed open loop in the absence of large
perturbations.

There are two major issues with the proposed approach
that were not addressed in this paper. The proposed approach
does not address stochastic variation in controller duration
and when designing controllers there is a robustness/path
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length trade-off. The ATAJPG only captures determinis-
tic differences in duration between controllers. Capturing
stochastic variation in duration requires a multirobot path
planner that can reason about uncertainty. We propose to
leverage prior work on single robot belief-space planning
[7, 13] to enable M* to plan with uncertainty. In belief space
planning, the position of each robot is represented by a belief
distribution rather than a single coordinate, and constraints
are placed on the maximal likelihood of collision. Running
a path planner in belief space can produce a solution more
quickly than solving the full partially observable Markov
decision process.

In general, using controllers with larger domains will
produce more robust paths as they will tend to increase the
separation between robots and increase the size of perturba-
tions required to force a robot out of its assigned controller.
However, maintaining large separations will lead to longer
paths and may make finding paths difficult or impossible if
multiple robots must pass through a narrow bottleneck in
both directions. One possible resolution would be to deploy
overlapping controllers with varying sizes. If traversing the
same distance using large controllers is made cheaper than
traversing the same distance using small controllers then M*
will automatically prefer to use large, robust controllers when
possible. However, M* will still be able to fall back on the
smaller controllers if necessary to find a path or if using
the larger controllers would require excessively long detours.
Adjusting the relative costs of the large and small controllers
would allow tuning of the robustness/path length trade-off.

This work was supported by the MURI ANTIDOTE pro-
gram and the ONR Subcontract to the Applied Physics Lab
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Program Prime Contract Number N00024-13-D-6400.
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