Recent Changes - Search:


Home Page
MAPF Info
MAPF News
Mailing List
Meetings
Publications
Researchers
Benchmarks
Software
Apps
Tutorials
Class Projects

[Internal]

Publication

M. Damani, Z. Luo, E. Wenzel and G. Sartoretti. PRIMAL2: Pathfinding via Reinforcement and Imitation Multi-Agent Learning - Lifelong. IEEE Robotics and Automation Letters, 6, (2), 2666-2673, 2021.


Abstract: Multi-agent path finding (MAPF) is an indispensable component of large-scale robot deployments in numerous domains ranging from airport management to warehouse automation. In particular, this work addresses lifelong MAPF (LMAPF) - an online variant of the problem where agents are immediately assigned a new goal upon reaching their current one - in dense and highly structured environments, typical of real-world warehouse operations. Effectively solving LMAPF in such environments requires expensive coordination between agents as well as frequent replanning abilities, a daunting task for existing coupled and decoupled approaches alike. With the purpose of achieving considerable agent coordination without any compromise on reactivity and scalability, we introduce PRIMAL2, a distributed reinforcement learning framework for LMAPF where agents learn fully decentralized policies to reactively plan paths online in a partially observable world. We extend our previous work, which was effective in low-density sparsely occupied worlds, to highly structured and constrained worlds by identifying behaviors and conventions which improve implicit agent coordination, and enable their learning through the construction of a novel local agent observation and various training aids. We present extensive results of PRIMAL2 in both MAPF and LMAPF environments and compare its performance to state-of-the-art planners in terms of makespan and throughput. We show that PRIMAL2 significantly surpasses our previous work and performs comparably to these baselines, while allowing real-time re-planning and scaling up to 2048 agents.

Additional videos can be found on the YouTube playlist of the paper.


Download the paper in pdf.

Edit - History - Print - Recent Changes - Search
Page last modified on January 20, 2025, at 11:26 PM