Recent Changes - Search:


Home Page
MAPF Info
MAPF News
Mailing List
Meetings
Publications
Researchers
Benchmarks
Software
Apps
Tutorials
Class Projects

[Internal]

Publication

J. Li, Z. Chen, D. Harabor, P. Stuckey and S. Koenig. Anytime Multi-Agent Path Finding via Large Neighborhood Search. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pages 4127-4135, 2021.


Abstract: Multi-Agent Path Finding (MAPF) is the challenging problem of computing collision-free paths for multiple agents. Algorithms for solving MAPF can be categorized on a spectrum. At one end are (bounded-sub)optimal algorithms that can find high-quality solutions for small problems. At the other end are unbounded-suboptimal algorithms that can solve large problems but usually find low-quality solutions. In this paper, we consider a third approach that combines the best of both worlds: anytime algorithms that quickly find an initial solution using efficient MAPF algorithms from the literature, even for large problems, and that subsequently improve the solution quality to near-optimal as time progresses by replanning subgroups of agents using Large Neighborhood Search. We compare our algorithm MAPF-LNS against a range of existing work and report significant gains in scalability, runtime to the initial solution, and speed of improving the solution.


Download the paper in pdf.

Edit - History - Print - Recent Changes - Search
Page last modified on January 20, 2025, at 11:28 PM